关注:
微信二维码
掌上有色:
app二维码

铋湿法冶金热力学

2019-03-04   
在铋的湿法冶金进程中,用三氧化铁作氧化剂氧化浸出辉铋矿是最常见的湿法冶金办法。作浸出剂的湿法工艺属氯化冶金领域,这种浸出剂在水溶液中既是氧化剂,又是氯化剂。因为这种氧化和氯化效果,原猜中的金属以氯化物形状被溶出,硫则被氧化为元素硫。这种浸出进程也和其他湿法冶金浸出进程相同,可凭借电位-pH图对有关反响进行热力学分析,讨论浸出进程的可行性。
一、Bi2S3在水溶液中的溶解度
Bi2S3在水溶液中溶解度很小,   其溶度积Ksp=10-98.9。   在水中Bi3+的浓度仅为  10-20.81mol∕L,而在pH=0的酸性条件下,Bi3+的浓度也仅为10-3mol∕L。因而Bi2S3在惯例酸性条件下是不能浸出的。因为Bi3+能与Cl-构成合作物,如在298K,离子强度I=2.5mol∕L时,由文献可知,Bi-Cl-系统的水溶物中以BiCl52-和BiCl63-为主,见图1,其累计生成常数分别为107.68和108.04,因而在有Cl-参加的反响条件下,Bi2S3的溶解度有显着的进步。杨显万、邓伦浩核算制作了298K、pH=1时的lg[Bi]T-lg[Cl-]图以及不同[Cl-]的lg[Bi]T-pH图(见图2图3)。可见跟着系统中[Cl-]的添加,Bi2S3的溶解度有显着的上升。从图3能够推算出,在298K、NaCl浓度为3mol∕L、pH=0的水溶液中,Bi2S3的溶解度约为2.1g∕L。由此可见,Bi2S3有了显着的化学溶解。

(298K,2.5mol∕L NaClO4,Bi3+=10-4moll∕L)
图1  铋氯离子合作物的分配和氯离子浓度的联系

([H2S]=0.01mol∕L,pH=1)
图2  [Cl-]对Bi2S3溶解度的影响

图3  Bi2S3在不同浓度NaCl水溶液中的溶解度(H2S饱满)
NaCl浓度:1-1mol∕L,2-2mol∕L,3-3mol∕L
图2标明,溶液中有必定量的氯离子存在是铋物料在氯化浸出进程的非常重要的条件。浸出剂具有足够高的总氯浓度是确保浸出系统不发作水解然后到达杰出浸出的先决条件。图3标明,溶液中铋的溶解度随pH值的下降而急剧升高,溶液酸度的进步,有助于增大铋在溶液中的溶解度。
二、铋-硫-水系的热力学
王成彦、邱定蕃等使用有关文献所供给的各物质的热力学数据核算制作了常温下Bi2S3-H2O系的E-pH图,见图4。

图4  Bi(Ⅲ)-S-H2O系电位-pH图

图中对应的化学方程式和平衡方程式如下:


图4指出,凡具有标准氧化复原电位高于0.499V的氧化剂,均可使Bi2S3氧化浸出。二的EFe3+/Fe2+=0.771V,的ECl2∕Cl-=1.35V,都能够将Bi2S3氧化浸出。
三、硫化铋-氯离子-水系E-pH图
杨显万等核算制作了298K下Bi2S3-Cl--H2O系E-pH图和E-lg[Cl-]图(见图5和图6),图中相应的反响方程式和平衡方程式略。

图5  Bi2S3-Cl--H2O系E-pH图


图6  Bi2S3-Cl--H2O系E-lg[Cl-]图

从图4、图5和图6能够看出:
(一)在不含Cl-的溶液中,反响Bi2S3+6H+=2Bi3++3H2S不可能发作  (其平衡pH=-3.67),且Bi2S3的氧化电位较高(0.42V)。在含Cl-的溶液中,上述反响的平衡线明显右移(pH=-0.027),一起Bi2S3的氧化电位也明显下降。也就是说,在含能够与Bi构成合作物的Cl-的水溶液中,Bi2S3无论是酸溶仍是氧化都比在不含Cl-的溶液中要简单。因而在含Cl-的酸性介质中,经过湿法冶金来处理Bi2S3在热力学上是可行的。
(二)Fe3+和Cu2+完全能够氧化Bi2S3,溶液中Fe3+的存在有利于Bi2S3的浸出。
(三)坚持溶液有必定的酸度是很有必要的,的参加具有如下的效果:有利于元素硫的生成。促进氧化铋矿的溶解,进步铋在溶液中的溶解度,避免铋盐的水解。
(四)Bi2S3可经过两种途径浸出
化学溶解:

化学氧化:

在选用矿浆电解技能处理铋矿时,还存在着Bi2S3的阳极氧化:

(五)分出元素硫的平衡pH值上限为-2.34,下限为-5.54。当pH值大于-2.34时,硫化物中的硫应氧化成HSO4-或SO42-。事实上,因为动力学的原因,80%以上的硫仍以单质形状产出。

关注SMM

微信二维码

微信扫一扫关注

掌上有色

掌上有色二维码

掌上有色下载

返回顶部

返回顶部