您所在的位置: 铋硒碲价 > 铋硒碲百科 > 铋的火法粗炼的产出物
关注:
微信二维码
掌上有色:
app二维码

铋的火法粗炼的产出物

2019-03-04    来源:    
火法粗炼的产出物,包含粗铋、冰铜、炉渣、烟尘与烟气。
一、粗铋
粗铋是火法粗炼的首要产品,除含生成分金属铋外,还含有一些杂质,如铅、铜、银、砷、锑、碲、铁等,这些杂质的含量,随炼铋炉料的不同而动摇很大。表1列出了粗铋的化学成分。
表1  粗铋的化学成分(%)

从表1可见,铅是粗铋中的首要杂质金属,这是因为提铋原猜中含铅高,在粗炼进程中又没有除铅工序所造成的。有的工厂为了除铅,在炉猜中配入1%~2%的食盐,但脱铅效果并不显着,而且使部分铋氯化蒸发,然后影响铋的熔炼直收率。而且,铅复原入粗铋虽下降了粗铋的档次,却有利于在精粹阶段收回铅。
粗铋档次的凹凸,首要决定于炉料含铅量,炉料含铅高则粗铋主成分低,炉料含铅低则粗铋主成分高。一般从有利于铋的精粹操作,又有利于铅的收回考虑,要求粗铋档次操控含铋80%左右,粗铋中铋与铅高于95%。
二、冰铜
火法粗炼产出的铋冰铜,由金属硫化物组成,其间也溶解了少数金属铅与银。首要的金属硫化物为硫化亚铁,、硫化亚铜、硫化铅等。
造冰铜的意图有二:一是使铋精矿中的硫与铁屑反响生成FeS进入冰铜,而使铋复原为金属进入粗铋,然后到达硫与铋别离的意图;二是使氧化铋渣中的铜与参加之黄铁矿反响,生成Cu2S进入冰铜,而使Bi2O3复原为金属进入粗铋,到达铜与铋别离的意图。
铋冰铜的化学成分列于表2。
表2  铋冰铜的化学成分(%)

表2中,铋冰铜中含硫15%~30%,铁15%~35%,铜5%~30%,三者是构成冰铜的首要成分,所以研讨铋冰铜的性质,可参阅Cu-Fe-S三元系状况图(图1)。

图1  Cu-Fe-S三元系状况图
从图1可见,在图右侧的冰铜熔体存在区域较狭隘,在Cu2S一端为富冰铜区,在FeS一端为贫冰铜区。因为铋冰铜含铜动摇在5%~15%左右,最高含铜不超越35%,所以属贫冰铜区。在熔炼温度下,若冰铜含硫量下降,则贫冰铜将进入固-液两相平衡区,分出金属铁的固熔体堆积于炉底,构成炉底结,会使炉况恶化。跟着温度升高,冰铜熔体区将由狭变宽,而金属熔体与冰铜熔体共存液相分层区将变窄,也就是说,冰铜对铁的溶解度变大,不易分出金属铁的固熔体。所以,升高炉温可防止积铁发作。
依据Cu-Fe-S三元状况图,可开端挑选冰铜的熔点与成分。
铋冰铜的熔点挑选在850~1050℃之间较好。PbS和Na2S会使冰铜熔点下降,而Fe3O4和ZnS会使冰铜熔点升高。
冰铜的密度取决于其间各种金属硫化物的含量,可运用加和法近似核算。
表3列举了冰铜中有关的金属硫化物的密度。
表3  金属硫化物的密度(克/厘米3)

以表3所列冰铜成分为例,取Cu 10%、Fe 30%、S 33%、Pb 5%核算铋冰铜的密度,先换算成金属硫化物并使其总和为100%,则得Cu2S 32.2%、FeS 60.4%、PbS 7.4%,核算冰铜的密度ρM:

铋冰钢的密度,一般挑选在4.5~6之间,Na2S量添加时,铋冰铜的密度下降,PbS量添加时,铋冰铜的密度升高。
混合熔炼中铋冰铜产出量多,一般为投入炉料总量的一半。这是因为铋精矿中首要为硫化矿,并存在单体硫。因为含硫高,置换硫所用的铁屑耗量大,生成的硫化亚铁多,故冰铜量大。所以,下降冰铜含铋,削减从冰铜中带走的铋量,是进步铋的火法粗炼直收率的首要途径。
因为FeS和Cu2S都是贵金属的杰出捕集剂,所以铋冰钢中溶解了必定数量的银,炉猜中的银约有25%乃至50%进入冰铜,所以,冰铜的再处理以收回银十分重要。有条件的工厂,常将铋冰铜返铜体系或铅体系处理;有的工厂当产出的冰铜含银与铋高时,则进行二次熔炼,以收回其间锻和铋;而有的工厂为了收回银,则变革工艺流程,法粗炼为湿法处理,以便在粗炼阶段进行归纳收回。
三、炉渣
火法粗炼产出的炉渣,为各种金属氧化物与脉石氧化物组成,其成分动摇规模列于表4。
表4  铋炉渣的化学成分(%)

由表4可见,冶金炉渣是金属氧化物的硅酸盐。因为炉渣产出量大,冶金反响与沉降别离在炉渣中进行,所以,冶炼进程要求炉渣具有杰出的物化性质,如熔点、粘度、密度、电导率等。炉渣的性质与其结构有关,关于对炉渣结构的研讨,存在两种理论,即分子理论与离子理论。
炉渣结构的分子理论以为:炉渣是由各种简略的与杂乱的氧化物组成的,跟着温度的升高,杂乱氧化物离解成简略的氧化物的趋势增大,在液态炉渣中,杂乱氧化物只要离解出游离的氧化物后,才干参加反响,如:

关于熔渣中游离氧化物的浓度,现在还不能进行测定,只能依据经历断定,这是分子理论的不足之处,特别是分子理论还不能解说炉渣的性质。
炉渣结构的离子理论以为:熔渣由阴离子与阳离子组成,金属氧化物离解为金属阳离子与氧阴离子:

而SiO2吸收氧阴离子构成络合阴离子,

硅酸盐的结构杂乱,但存在如下共性:结构中的Si4+离子不存在直接的联接键,键的联接通过氧离子来完成;每个Si4+离子存在四个O2-离子为极点的四面体的中心,构成硅氧四面体,它是硅酸盐晶体结构的根底;硅氧四面体的每个极点,即O2-离子最多只能为两个硅氯四面体所共用;两个附近的硅氧四面体之间,只以共顶而不以共棱或共面相联接。X射线结构分析证明,硅酸盐中硅氧四面体有岛状、组群状、链状、层状和架状五种方式。
运用离子理论可对炉渣的理化性质阐明如下:
硅酸盐炉渣的粘度;是因为各层液体运动速度不同,发作内摩擦的成果。硅酸盐炉渣的粘度随组成改变的联系是离子间的相互效果能及其与组成浓度的联系。金属氧化物对粘度影响具有两重性,它既使硅氧阴离子团解聚,下降粘度,又因其电价较高而半径不大,能攫取硅氧阴离子团中的O2-离子来围住自己,导致硅氧阴离子团聚合,被夺去O2-离子使粘度增大。
流动性好的冶金炉渣,粘度在0.5~5泊之间。5~20泊的炉渣,尚能满意工艺要求;而大于30泊的粘渣,则流动性差,不能选用。
硅酸盐炉渣的导电度:熔融的硅酸盐炉渣的电导率,随金属氧化物含量的添加而增大,随SiO2含量的添加而减小。因为金属氧化物量的添加会促进熔渣电子导电效果增大,而SiO2量的添加会使离子导电件用增大,而使电导率下降,更重要的是当熔渣中硅酸度增高时,因为复合阴离子SixOy2-的错综与兼并,随同发作硅氧离子的聚合效果,使阴离子淌度下降,影响到熔渣电导率下降。
硅酸盐炉渣的密度:依据炉渣的分子结构理论,由组成炉渣的氧化物的密度,选用加和法核算。表5列举了炉渣中有关氧化物的密度。
表5  氧化物的密度(克/厘米3)

铋炉渣的密度挑选在3~4克/厘米3。
以表2所列炉渣成分为例。取FeO 20%,SiO2 30%、Na2O 20%、CaO 15%。核算铋炉渣的密度。先将其换算为总和100%,则FeO 23.5%、SiO2 35.3%,Na2O 23.5%、CaO 17.7%。
核算炉渣的密度ρs:
    
能够依据硅酸度来挑选炉渣。一般硅酸度K值操控在1~2。即:

K值大于1.5,相当于酸性渣,K值小于1,相当于碱性渣,K值在1~1.5之间相当于中性渣。仍以上述渣型FeO 23.5%、SiO2 35.3%、Na2O 23.5%、CaO 17.7%为例核算硅酸度。

现在,关于铋炉渣的研讨工作还很不行,因为没有固定的渣型,所以对炉渣的熔点、密度、粘度也没有测定数据。出产实践中首要是凭经历调整和把握渣型。一般挑选流动性好、密度小、呈乌亮玻璃光泽的炉渣。当渣呈暗灰色时,则应削减炉猜中纯碱的参加量;当炉渣粘度大,流动性差时,则应添加纯碱与萤石粉的投入量。炉况正常时,这种弱酸性渣可使渣含铋稳定在0.1%左右。
因为铋精矿大多与钨、钼共生,所以铋精矿中常含少数钨与钼。粗炼时,钨、钼以氧化物状况,一部分蒸发入炉气,一部分进入炉渣与纯碱效果生成钨酸盐、银酸盐。
四、烟尘
在反射炉熔炼进程中,燃料焚烧发作之二氧化碳、等气体,与熔池内反响发作的炉气一道,夹藏很多粉尘,从炉尾逸出,进入烟道。沿途有部分颗粒较粗、密度较大的烟尘在烟道沉降;部分融熔状况的粉尘,冷却后粘附在烟遭壁上,构成烟道结,而大部分烟气进入收尘体系经搜集、净化后排放。铋烟尘化学成分列于表6。
表6  烟尘的化学成分(%)

铋烟尘中首要成分的形状如下:
铋:铋蒸气蒸发冷凝后之金属铋微粒、铋化合物蒸发后之粉尘(如氧化铋沸点447℃,易蒸发;硫化铋易蒸发)。
铅:铅蒸气冷凝后之金属铅微粒、铅化合物蒸发后之粉尘(如氯化铅易蒸发,在1140℃时燕汽压达3099帕;硫化铋易蒸发,995℃时蒸汽压达2366帕;氯化铅易蒸发,沸点954℃)。
砷:As2O3蒸发后之粉尘及硫化砷(沸点为707℃)蒸发后之粉尘。
锑:Sb2O3蒸发后之粉尘及硫化锑(沸点为1080℃)蒸发后粉尘。
钼:三氧化钼(沸点1155℃)蒸发后之粉尘。
钨:三氧化钨(在850℃开端剧烈提高,1350℃时欢腾)蒸发后之粉尘。
硫:生成SO2进入炉气,烟灰中的硫为各种硫化物带入的。如硫化铋、硫化铅、硫化砷、硫化锑等。
碳:烟尘中的碳是在弱复原性气氛中来被焚烧的碳黑粉末。
五、烟气
冶金炉含尘炉气冷却进入收尘室,经袋滤器净化后,烟气与烟尘别离,烟气中含有CO、CO2、H2O、O2、SO2、N2等气体,烟气的化学组成列予表7。
表7  烟气的化学组成(%)

净化后烟气含尘小于0.03克/标米3,到达排放标准。
关于我们 | 加入我们 | 联系我们 | 法律声明 | 隐私声明 | 有色协会 | 有色百科 | 网站地图 | RSS | SMM English
Copyright© 2000-2018 上海有色网